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NOTATION . "

C Chord of control plane section

FZ
CL pU2  Lift coefficient of control plane section

2

D Diameter of the submerged body

E Exponential Integral

Fx Axial Force

F z  Vertical force V

Fx
- Non-dimensionalized axial force
pU 

2L2

2
2 z % °

F= Non-dimensionalized vertical force" pU 2L2

2

Fn - Froude number of the subm,?rsible

Fc -gC Froude number of the control plane section

g Gravitational acceleratLon ._

G Three-dimensional Green function

G2  Two-dimensional Green function

h Depth to the axis of revolution of the submerged body

h Depth of submergence to control plane section at quarter chord"

h Depth of submergence to control plane section at mid chord

2 4

i - /(-1) Imaginary Unit

L Length of the submersible

My Moment about the oy-axis
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MY Non-dimenuionalied moment about the oy-axis

2

n Unit vector of the body surface drawn into the fluid

p Pressure

Position vector of the center of gravity

U Speed

p Water density

a Angle of attack of the control plane section

e Pitch angle of the bare hull

r Vortex strength

a Source or sink strength

* Three-dimensional velocity potential

Two-dimnensional velocity potential

iv.



ABSTRACT

The forces and moments acting on a
submersible are computed when it is

beneath the free surface or near a wall.
The method used in this report is based
on potential theory. In the computation
of forces and moments on the hull, a

three-dimensional method is applied. The
free surface condition is linearized and
the body boundary condition is exact.
The body surface is discretized with

surface elements and the singularity of
source and sink is distributed on them.

The strengths of the unkown sources and
sinks are determined through the body
boundary condition. A two-dimensional
method is applied to compute forces and
moments of the'67ontrof surfaces. The
boundary conditions are same as those for
three-dimensional case. Computed forces
and moments of the control planes are
added to those of the bare hull. To
include the interference effect of the
hull on the control planes, the flow
velocity at each control plane is

computed with existence of the hull.
There are some discrepancies between
computed results and experimental data
because of the effect of viscosity. The
overall trends in the computed results
are same as those of the experiments.

ADMINISTRATIVE INFORMATION
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INTRODUCTION

There is a need to develop an analytical method to compute the forces and

moments acting on a submersible when it is beneath the free surface or near a

wall. The methodologies presently available to compute these hydrodynamic

forces and moments are limited in application. Pond * computed the moments

developed on a Rankine ovoid by using the method of axial distribution of
2

sources and sinks. McCreight improved the method used by Pond by distributing

the dipoles and computed the vertical force. Their results are in good agreement

with the experimental data. However, the methods used by Pond and McCreight are

valid only for zero pitch angle.

The present method computes the vertical and longitudinal forces and pitch

moment acting on a submersible with and without control planes when the

submersible moves beneath the free surface or near a wall. This method is more

accurate mathematically than that of Pond1 . Furthermore, the effect of pitch

angle is incorporated in the computation. For the computation of forces and

moment acting on the bare hull, the so-called panel method is applied. The body

surface is discretized with many quadrilateral planes, and sources and sinks are

distributed on these surface elements. This method can be applied to a

submerged body of arbitrary shape. To compute the forces and moment of the
3

control planes, the method developed by Giesing and Smith is used.

Two-dimensional sources and sinks are distributed around the sections of a

control plane, and a vortex located in the middle of each section is introduced

to compute lift force. The inlet velocity to the control planes is computed at

the tips of the sections of the control plane to include the interaction effort

between the bare hull and control planes.

*References are given on page 45.
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VELOCITY POTENTIAL

HULL

The coordinate system, oxyz, moves at a speed U, which is the mean forward

speed of the submersible dlong the positive ox-axis (see Figure 1). The posi-

tive oz-axis is always directed vertically upwards. The origin 0 is located

above the center of gravity of the submersible. The oxy-plane is the plane of

the undisturbed free surface.

We assume initially that the submersible and coordinate system are sta-

tionary and that the fluid around the submersible moves toward the negative ox-

axis with uniform speed U. Then, the total velocity potential for the bare hull

can be expressed by

D(x,y,z) = -Ux + $(x,y,z) (1)

where $ is disturbance velocity potential due to the submersible. The distur-

bance velocity potential satisfies the following conditions:

1. Laplace equation in the fluid domain

2 2 2x2 y +z € 0 (2)

?x 6y 6z

2. The linearized free-surface condition

2
- + k-- 0 (3)

6x 6

3. The body boundary condition

5.

U. " Un . (4) %

6 n,~ *~ 
%i 
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4. The radiation condition: the disturbance vanishes sufficiently fast

far ahead of the ship.

-2 2 2
I. Rs( + *y + -0 (5)x y

(x2 + y2)
1/2

5. The bottom condition: the normal velocity at the bottom is zero.

*z(X,y,z) - 0 as z - (6)

In equation (3), the constant is given as

0 2 (7)
U

and in Equation (4), the unit vector which is oriented normal to the fluid is

given by

(nI, n2, n3) =n

(8)

(n4, ns, n6 r G x n

where r0 is the position vector of the center of gravity.
Gg

The solution of Equation (2) is given by Brard in an integral form as

(x'y'z) ff G(P,Q)a(Q)dS(Q) (9)

where P(x,y,z) is the field point, Q(xoYoz o ) the source point, S the wetted

surface of the body, c the unknown strength of sources and sinks distributed on

the body surface, and G is the Green function which is given by Wehausen and
5V

Laitone as

4



G(PQ) k°0fl sec 2 e de f e(Z+Z)Ue- du (10)
r 1  0 0 u - kosec2 0e

where

Cx2 0)2 2 z0
2  ,11)

r 2 (X - Xo) 2 + (y - yo) + (z - zo )  (11)

2 2 2 2
r = (x - Xo) + (y - Yo) + (z + zo ) (12)

and

S(x - xo ) cosO + (y - yo) sinO (13)

Only the real part of Equation (10) is used in later computation. =

The strength of the sources and sinks, o, in Equation (9) can be found by

substitution of Equation (9) into Equation (4) to obtain

ff G(P,Q)o(Q)ds(Q) = -Un (14)
S "

The solution of Equation (14) is only feasible with the help of a numerical

procedure which will be given later.

The force acting on the body is expressed as

S pn ds
S

where p is the pressure around the body and is linearized from Bernoulli's

equation as

%,
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p - p U ox (16)

where p is the density of the fluid.

CONTROL PLANE

The velocity potential for the control plane, whose coordinate system is

shown in Figure 2, is expressed in the two-dimensional domain as 4,

V(x,z) - -Ux + 4(x,z) (17)

.i

where 4o is the disturbance velocity potential due to a section of the control ',

plane. This disturbance potential satisfies the following conditions.

1. Laplace equation in the fluid domain

2 2 (18)
6x ?)z

2. The linearized free-surface condition

-2 + k 0 (19)2  0

3. The body boundary condition

-- Un (20)
on I

4. Kutta condition: the velocities at the trailing edge elements, one at

the top of the surface and one at the bottom, are equal.

In addition, the disturbance potential should satisfy radiation and bottom

conditions similar to Equations (5) and (6).

6
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3
The solution of Equation (18) is given by Giesing and Smith . The velocity

potential function is divided into three parts as

4(x,z) - 4I1 + r(412 + 43). (21)

The velocity potential 4,1 is due to sources and sinks which are distributed on

each section of the control plane. 42 is the velocity potential due to a vortex

of unit strength which is located at the inside of a section. The vortex is

introduced to calculate the lift force around the section. 413 the last term of

Equation (21) is the velocity potential due to sources and sinks of unit

strength distributed on the section. This velocity potential cancels the normal

velocity generated by 42" If we substitute Equation (21) into Equation (20),

the following conditions are given

-Un (22)

and

?N 2 6 d3 3

- n bn " (23)

These three velocity potentials are expressed as

I(P) f J (q)G 2 (p,q)dl(q) for i1l and 3 (24)
C

and

4 2 (P) - Re{ l ln[x-a + i(z-b)] In (x-a) + i(z+b)

" ikx +-i- b In[-a+ zb)'-

ik[xa + (z+b)] + 2 e-iko[x-a + i(z+b)]l
-2pv f® dk+2i

0 k- ko

7
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where ai is the two-dimensional strength of sources and sinks, (a,b) the

location of the vortex, q(xoz o) a two-dimensional source point, and G2 is the

two-dimensional Green function given by Wehausen and Laitone5 as

G2(P,q) - Re [In [x-xo + i(z-zo) ] + ln[x-xo + i(z+zo)]

(26)

p e- i k[x - xo + i(z+z°)] dk - 2ni e-i k o x -xo + i(z+zo)1.-+ 2pv f k - ko

0 0

In Equations (25) and (26), Re denotes the real part of a complex quantity and

pv the principal-value integral. The vortex strength P in Equation (21) will be

determined with the Kutta condition. Tne pressure around each section of the

control plane can be obtained from Equation (16) by substituting (x for * . The

force and moment acting on the section can be computed with an equation of the

same form as Equation (15).

By substituting Equation (24) into either Equation (22) or Equation (23),

the unknown strength of the sources and sinks for the two-dimensional case can P

be determined from the following equation

f oyi(q)G 2 (p,q)dl(q) - Un for i - 1 (27)

2n 5n C

- for i-3.n

When the submersible is moving near a wall, the linear free-surface

conditions, Equations (3) and (19) are no longer valid. Instead, we should use

the wall boundary conditions given by

0 at z 0 (28)
az

and

8
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0 at z - 0 (29)8z

All other boundary conditions are the same as those described in Equations (2),

(4) - (6), (18) and (20). The solutions in this case have the same form as

Equations (9) and (21), with different Green functions. The Green functions can

be expressed by application of the method of images (see Reference 6) as

G(P,Q) I- + 1 (30)
r r1

for the case of bare hull and

G2(p,q) = Relin[x-xo + i(z-zo)] + ln [x-x o + i(z+zo)]} (31)

for the case of control plane. The velocity potential due to a unit vortex

located at (a,b) should be

42(p) - Re{ - - ln[(x-a) + i(z-b)] - l n [(x-a) + i(z+b)]} (32)
2 2% 2n

To find the velocity potentials for the wall condition, Equations (10), (25) and

(26) should be replaced by Equations (30), (32) and (31), respectively.

9



NUMERICAL PROCEDURE

To determine the unknown strength of the sources and sinks in Equation (14),
we first discretize the wetted surface of the body S with many quadrilateral

elements. Figure 3 shows the discretized surfaces of a spheroid. Furthermore,

we assume that the unknown strength of the sources and sinks, o(Q), is constant

on each surface element. Then Equation (14) can be written as follows

N

4 E J =j1(Qj )n G(PiQj) ASj - -Un1 l for i - 1, 2, ... , N (33)

Once the derivations of the Green function, G, are evaluated numerically,

Equation (33) can easily be solved for oj. The numerical evaluation of the

Green function and its derivatives is the most difficult part, and consumes a

lot of computer time when running the program.

The normal derivative of the Green function in Equation (33) can be

expressed as

_G . bGG n + )G n + 6G n (34)

bn ix I y 2 z 3

The task is to find three derivatives of the Green function. To do this, we

first derive the Green function suitable to numerical evaluation. The Green

function, Equation (10), can be rewritten as

1 k 2 2 e-ZU (e i +u +e i3_u)

G2 f secede {f + i du
r r I n u- u O(L1 )

eD zu(e-i +u + -i3 u
+U-u e- dul (35)

0 

-- U 0

(L 2

10
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where

W+ X (X-Xo) cos e + (y-yo) sin e

- (x-xo) cos e - (y-yo) sin 9

(36)

z - Iz + z.1

u0 = ko sec 2

The notation under two of the integrals in Equation (35), namely, Ll or L2,

represents the integral paths shown in Figure 4. To derive the derivatives of
7

the first two terms of Equation (35), the method which Hess and Smith developed
8

for unbounded flow can be used. Hong and Paulling have applied this method for

the computation of motions of a body in waves, and their paper can be examined

for the details. Since Reference 8 can be examined for these details, we will

present here the derivation of the last two terms of Equation (35).

We write Equation (35) as follows

G - - -1+ G (37)

G 3 - f uo dO e --Y (e"'+u + e-u) duu-u03 0 0 - U 0

(LI) (38)

+ e U(e-iw+u + ei - u ) dul

(L2)

We now change the variable for the integral path, LI, as follows:

v-(U-uo)(T-i) with r G or ;

1e



then, the integral path becomes that shown in Figure 5. The integral path, LI,

is now transferred onto the path C, in Figure 5 as

" - Zu e i z - u  e-oZ - v

feu ei- du - e"o( f e v-dv (39)
u o-u Clv

(LI)

The integral over CI can be easily evaluated with the method of residue as

f dv e v dv + -2xi}. < o (40)

uo(z - iiW)

with the introduction of the exponential integral

dv - El[-Uo(z (41)

Uo(Z - iz)

the integral over C1 becomes

IA

dv E -- + -2,i1  W < o (42)

Cv 0 W >o

.1
12



By substituting Equation (37) into Equation (33), the integral over LI is given

by

Se-zu(e i+u + eiw-u ) eUo(Z i+) [-U( - i;+)] 2nifdu eO {El -w+ [0o 21
0 u - u o(L1)

+ e ( E + {2ni , W o (43)

0 w+,._> o

For the integral path, L we change the variable as follows:

v -(u - u o ) (7+ i) with or

then, the new integral path is given in Figure 6. With this new variable, the

integral path, L2, is now C1. Employing the same procedure as used previously

to evaluate the integral over L1, the Integral over L2 becomes

-T, iw~u -iw -

e (e + e du - euo(z + i +) El[-uo( Z + i +)] + 201i
0 du - Eu- 0 z o 0

(L2)

+ e- uo(z + iW-){El[-uo(z + i;L)] + 2ni w+, w- < o (44)

0 - >

13



Substitution of Equation (43) and (44) into Equation (38), allows us finally to

express G3 in a convenient form for numerical evaluation as

n/2

G Mu. dO l - - i +){El [_-Uo z 0
lu -22

G " e - 1 u w -u (z - i + ] - 2 0

3 e-Uo( 0 d _ {E0 uo( E_ -u_)] - i ).

0 0

(45)

+ e-Uo(z + iW+) {E[-uo( + iz+)] + 2ti}

0

oo" e-uOz+'- {E,[--%(z + _]+ 2ni}} W+, W_-o( < 0 )
o0 +, > 0

If we let

u e --Uo(Z iW+) E _R

uO Eu(z iw+)] R H i

ue -Uo(Z - iW+) = C + is (46)

u0eUo(z - ic_) E1[Uo(z i-)] =R + il

0 IICII

u e-_Uo(z- iW_) =C + is

14
CC.'

I..



we can express G3 as

-n/2

G 2- - [ + )S + R +-(2 2n)SwG +, - Z S0 (47)
3 0 0

z+, is- >0

The derivatives of G3 can be easily expressed from Equation (38)

GC3- - i u cosO G3  
(48)

bx

6G3
- .iu sine G3 sign(w) (49)

6G3

5- - u 3  (50)

where

sign(W) - 1 for w W+

(51)
-- 1-

15
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With substitution of Equation (45) into Equations (48), (49) and (50), the deri-

vatives of G3 can be expressed in final form as

n/2
6G3 2 Z+ + (+_x 2 uo coe {- - I +( 2 t)c

-X-2 n-2 0
0 z + ++

+ W_ - T + 20) C}de (52)
-2 -2 0
z+ + W_

n/2

3 2 u -sinO w+ I + (2 )C

by n -2 "2 0
+W

+ +

+ "3 - (2n ) ZdO (53)

-2 -2 0
z+ + W_

3 w - i u °  + R + (0)S
z n -2 2 0

0 z + +wz+ +

z + R + 2nt S'd0 (54)

-2 +2 0
z +

16
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In these equations, the upper Value is taken when Q+ or 0_ is larger than and

equal to 0 and the lower value is taken when Q+ or _ is negative. Inglis and

Price have derived the Green function for a translating and pulsating source

s ,llar to G3 with the change of variable and with the change of integral path.

When the argument, -u0 (z+i ) or -u 0(z-i ) is small, the exponential integral

can be expressed in a series form (see Reference 10) as

zl~~~z)~ -z- n
E(- - -Y -in z - i ()n arg zj < x (55)

nwI nnl

where z is any complex number and y - 0.5772157 is Euler's constant. When the

argument becomes very large, the exponential integral is evaluated by the method
11

of Todd. For a large complex number z - x + iy, the exponential integral

multiplied with exponential funct'on is expressed as

e El(Z) - I1 - iI2  (56)

where

f eU x + u du (57)

0 (x+U) +y~0

12 f e u  y 2  2 du (58)(x + U)2 + y2

0

17
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For the evaluation of II and 120 we use the following approximation

Qm

(n) x(n)2f e-t f(t) dt (n ) f(x ) (59)
fi i

0

where xi(n ) are the zeros of the Laguerre polynomial and Xi(n ) are the
(5)

corresponding Christoffel numbers. In this report, n is taken as 5, and xi
(5) :

and X are given in Table I.

Table 1:

Zeros of Laguerre Polynomials and

Christoffel Numbers

(5) (5)

xi

0.2635603 0.5217556

1.4134031 1. 3986668

3.5964258 0.0759424

7.0858100 0.0036117

12.6408008 0.0000234

The exponential functions in Equations (47), (52), (53) and (54) are highly

oscillatory when the real part of the complex argument is small and the imagi-

nary part is large. One of complex arguments in Equation (46) can be expressed

as

2
- i+) - k. sec 0 •[. + iR cos(O + )] (60)

18
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with

R 2= (X - X) 2+ (y - y)2

-a- 1 (Y - YO
p-tan - X0

When 0 2 - 1~ is small, the integral between 90 and 0 can be approximated as

e 2

J'uo(C + iS)dB f k sec 20 - exp-ko sec 2 O[T+ iR cos(O + (61)

E)2

f f(A + iB) exp[i(a8 + b)]dB

01

where A, B, a, and b are constant between 0 and 0 .* The last e),?ression in

Equation (61) can be analytically evaluated. Once the normal derivative of the

Green function, which contains Equation (61), is numerically evaluated, Equation

(33) can be expressed as a system of linear equations and a . can be solved by

the method of Gauss elimination.

For the computation of forces and moment of a control plane, we discretize

each section of the control plane with straight segments as shown in Figure 7.

The unknown strength of the two-dimensional sources and sinks on each segment is

*assumed to be constant. The subscript i for c in Equation (27) will be dropped

from now on to avoid confusion associated with that of segments. C~ represents
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each of a and a3 in the following equations. Equation (27) can be approximated

as

J o(qj) A (pi, qj) dS(q) U nli ,  (62)
%S for i =,.

the normal derivative of the two-dimensional Green function is

G2  G2  G2-E- , x nl, +  zn3 (63)
~n ~x 6. 3

We use the complex variables in derivation of derivatives of the Green function

suitable for numerical evaluation. If we introduce the following complex

variables

C - x + iz and Co - xo + izo, (64)

G2(p,q) - ReIF(C,Co)1 (65)

where

oe-ik(C - Co )

F(C,Co ) - ln(C - Co ) + ln(C - Co ) + pvf k - o  dk (66)

0

- 2i e-iko(C - 1)

In Equation (66), C is the complex conjugate of C . Then, the two derivatives0 o

in Equation (63) can be expressed as functions of F

bG2 F
Re{} (67)
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and

bG2

8z 6C1  (68)

The derivative of Equation (66) with respect to C is

F 1 + 1 i pvOk e- i
k (  - dk (69)

SC C -Co C - Co f k - ko

0

-i ko(C - 0 )- 2nz ko e

Integrating the last equation with respect to sj(qj) we obtain

f F dsj(qj) = -(cos j - i sin j)[ln r,+1 + i8j+ 1 -ir -io]sj bC

(Cos aj +i sin a )[1n r+ +i- -@ 1ri -08]
J+ j+

I dk k(z +- Zo )

(Cos e + i sin c ){pV k - k 0 e [cos k(x - Xoj+)

0

- i sin k(x - I - pv k dkk ek(z + zo) [cos k(x X,,)

0
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- i sin k(x - xo

+ 2%i (cos aj + i sin aj){eo( + Zo+ 1)o ko(x - xoj+l )

- i sin ko(x - xOj+l)]

- ekoCz + zoj+i)(cos ko(x - Xoj) - i sin ko(x - xoj)] (70)

the new variable and notation are given in Figure 8. The details for derivation

of Equation (70) are given by References 3 and 12.

The numerical procedure for determining ai and r is as follows: First, we

evaluate the normal derivative of the two-dimensional Green function which

enables us to solve Equation (62) for c,. Next, we calculate the normal

velocities at segments due to a unit vortex located at the center of the

section. To eliminate these normal velocities, we distribute a at each segment

of the section and determine 3 with Equation (23). We finally solve for the

vortex strength r in Equation (21) using the Kutta condition.

The computational procedure of forces and moments is as follows: The forces

and moments of the bare hull are first computed. This means it is assumed no

interference of control planes to the bare hull. To include the interference

effect of the bare hull to the control planes, the flow velocity, U, in Figure 2

is different from U in Figure 1. A control plane is cut at three different

spanwise locations. At the leading edge of each location (or section), U is

computed. This velocity is different from the steady forward speed, U, in

Figure 1. Two-dimensional forces and moments are computed at each section; and

these are summed along the spanwise direction. Finally, these summed forces and

moments are added to those of the bare hull.
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NUMERICAL RESULTS

In this section we will calculate the forces and moments acting on a submer-

sible moving under the free surface or under ice. Numerical results based on

the present method will be compared with results obtained from earlier theoreti-

cal methods and experiments. First, forces acting independently on the bare

hull and control plane will be compared; then, results for the combined hull and

plane will be compared.

Figure 9 shows the forces and moments on a Rankine ovoid having a length of

4 ft (1.22m). The ratio of length to diameter (D) is 10.5. The Rankine ovoid

is created by distributing sources and sinks along a line which is assumed to be

in a uniform stream in an unbounded fluid (see Reference 12). The computed ver-

tical forces (F') are generally somewhat larger than the experimental data for
z

smaller submergence (h) and smaller for larger submergence. The computed

moments (M') are generally smaller than the experimental data for all sub-
y

mergences when the Froude number is larger than 0.5. However, the overall trend

of the computed results is similar to that of the measurements. Results calcu-

lated by the present method are in good agreement with values obtained from pre-

vious analytical methods. Figure 10 shows the same results plotted as a

function of submergence. As the submergence becomes larger than three times the

diameter, the force and moments decrease rapidly for all Froude numbers.

Figures 11, 12 and 13 show similar data for a spheroid whose ratio of length

to diameter is 7. The findings here are somewhat different from those discussed

previously for the Rankine ovoid (see Figure 9). When pitch angle is zero (see

Figure 11) the experimental data for the spheroid extracted from Reference 13

are larger than the computed values at Froude numbers less than 0.5. The

agreement between computation and experiment is generally good when the

submergence is equal to or larger than the diameter: when the ratio of

submergence to diameter is 0.75, there is substantial difference. When the
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pitch angle i 2.5 degrees (bow up), the experimental results are larger than

those from computation for essentially all Froude numbers (see Figure 12). As

shown in Figure 13, negative pitch angle of 2.5 degrees (bow down), the

prediction and measurement of vertical force are, for the most part, in better

agreement than those for zero or positive pitch angle. The computed moments are

larger than the experimental results for all submergences and Froude numbers.

These discrepancies for non-zero pitch angle might be caused by the viscosity of

the fluid and also vortex shedding from the body or the cross flow effect.

Figure 14 shows the results of lift for a hydrofoil whose section has the

shape of NACA 4412. The results shown in this figure are those for a two-

dimensional section. The agreement between computation based on the present

method and experimental data from Reference 14 is good when the angle of attack

is smaller than 4 degrees (see bottom figure). As the angle of attack

increases, the computed results become larger than the measurements particularly

at the lower Froude number. It is of interest to observe that for this sub-

mergence the lift coefficient at the higher Froude number is smaller than that

at the lower Froude number. When the angle of attack is 10 degrees and the

Froude number is 0.922 (see top figure) there is substantial discrepancy between

the computed and experimental results as the submergence increases. The results

computed by the present method are further compared with the method developed by

Wadlin and Christopher in Reference 17, Equation (15). The calculations were

made for an aspect ratio of 10 to stimulate a two-dimensional lift coefficient.

It should be pointed out that Equation (15) of Reference 17 is strictly

applicable for aspect ratio of 0.125 to 10. Their results are almost half of

those by the present method. Compared with the experiment, the results of

Wadlin and Christopher show better agreement than those by the present method.

Figure 15 shows the results of lift for a hydrofoil whose section has the

shape of NACA 64A010. The aspect ratio of this hydrofoil is 6. As shown in the

bottom figure, for small angle of attack there are small differences between

computation and the experimental results taken from Reference 15. The differen-

ces increase as the angle of attack increases. The reason for these discrepancies
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may be that first, the effect of viscosity is not included in the computation,

and second, the test was done with turbulence stimulation. The top figure

indicates that for an angle of attack of 4 degrees, the computed lift

coefficient is about twice the measured value when the submergence is large.

When the ratio of submergence to chord is smaller than 0.5, the agreement

between computation and experiment is good. For small submergences, the lift is

more affected by the free surface than viscosity, and when the submergence is

large, the reverse is true. On the other hand, compared with the experiment,

the results of Wadlin and Christopher show better agreement than those by the

present method when the submergence ratio is larger than 2.

When the location of the sail plane or stern plane of a submersible is at a

depth of two or three times of chord, a better lift computation can be expected

with the method developed in Reference 17.

Figure 16 shows forces and moment for Model 4621 with and without stern-

planes at deep submergence. The computed and experimental axial forces are

fairly steady at different trim angles. The vertical forces for the bare hull

are computed to be significantly less than those of experiment. However, the

results of vertical forces with sternplane agree very well with those of experi-

ment except at a=12 ° . The reason for the good agreement for the case with

sternplane is that the vertical force (in this case lift) of the control plane

alone is over-estimated at deep submergence as shown in Figures 14 and 15; and

this over-estimation is compensated with the under-estimation of the vertical

forces of base hull. The moments are computed to be larger than the experimen-

tal values.

Figure 17 shows the results of vertical force of a spheroid with L/D=-7 near
18

a wall. The computed results are compared with the results of Newman.

Newman's method was developed using slender body theory and with the assumption

of L/D >> 1 and h/D << I. The vertical forces computed by the present method

are smaller than those computed by Newman. It is unkown which method is more

accurate.
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CONCLUSIONS AND RECOMMENDATIONS

The forces and moment acting on a submersible moving beneath the free sur-

face or near a wall with a pitch angle for the bare hull or a control surface

deflection have been computed using potential flow theory. There is good

agreement between calculation and experiment for the bare hull when the ratio of

submergence depth to the diameter is larger than I and the pitch angle is zero.

For the control planes alone, the good agreement between calculation and

experiment is achieved when the ratio of submergence depth to chord is small.

When this ratio is large, the force due to viscosity is dominant and the present

method generally computes forces larger than those of experiment.

From the present stud., the following conclusions may be drawn:

1. The numerical evaluation of the Green function needs to be improved

when the ratio of submergence depth to diameter is smaller than 1.0.

Near the free surface, the Green function has oscillatory behavior and

the exponential function decays slowly.

2. For nonzero angle of attack, there is a cross flow or vortex shedding.

The effect of cross flow or vortex shedding should be included in the

computation with the help of viscous flow analysis.

3. When the ratio of submergence depth to the mean chord of a control

plane is large, the lift is dominated by the contribution of viscosity.

The viscous effect on the lift should be incorporated in the future

computation.

4. To improve the results of potential theory, an empirical or analytical

approach should be developed with inclusion of viscous effect.
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